《倒数的认识教学设计【优秀4篇】》
作为一名辛苦耕耘的教育工作者,通常会被要求编写教学设计,教学设计是实现教学目标的计划性和决策性活动。我们该怎么去写教学设计呢?下面是小编精心为大家整理的倒数的认识教学设计【优秀4篇】,您的肯定与分享是对小编最大的鼓励。
倒数的认识教案 篇1
分析
《倒数的认识》是人教版小学数学六年级上册第二单元中的内容,是学生学习了分数乘法的意义及应用题之后的内容,为学习分数除法的意义及计算法则打基础,分数除法经常要转化成分数乘法进行计算,转化需要倒数的知识。因此,本单元在分数乘法的教学基本完成以后,编排了有关倒数知识的一节教材和一个练习,为下一单元的教学提前作准备。
学情分析
学生初看到“倒数”这一概念时,从字面上看也许对它有了一定的了解,所以通过学生自学,自主探索倒数有什么意义,如何求一个数(0除外)倒数的方法,使学生真正理解倒数的含义,在此基础上培养学生观察能力、比较能力与分析概括的能力。
教学目标
1、知道倒数的意义,会求一个数的倒数。
2、经历倒数的意义这一概念的形式过程。
3、培养学生观察、归纳、推理和概括的`能力。
4、利用教师的情感特征,激发学生的学习兴趣,让学生体会成功的快乐。
教学重点和难点
理解倒数的意义,会求一个数的倒数。
教学过程
教学环节
教师活动
预设学生行为
设计意图
一﹑创设活动情境
倒,你对这个字怎么理解?
那要是在这个字的后面加个数,就变成。。。倒数,你对这个词又是怎么理解?
出示1/5×5,3/8×8/3,1/12×12,15/7×7/15这几组算式,开展小组活动,算一算,找一找,这几组算式有什么特点? 同学们发现了每组算式两个分数的分子与分母正好颠倒了位置, 并且它们的乘积是1.
具有这种关系的数叫做互为倒数。谁来说一说什么样的两个数叫做互为倒数?出示倒数的意义:乘积是1的两个数叫做互为倒数。
学生说,就是把它倒过来,还做了个手势颠倒位置。
学生有可能会说,每组中都是一个是真分数一个是假分数。
还有的可能会说第一个分数的分母是第二个分数的分子第一个分数的分子是第二个分数的分母
学生有可能只计算出结果。没发现这几组算式它们的分子,分母的位置是颠倒的。
设疑,让学生产生求知的欲望。
从两个数的关系入手研究,抓住了数学的本质,使学生体会到数学的研究是一脉相连的。
让学生通过观察﹑计算发现这几组算式的乘积都是1.并且它们的分子分母的位置刚好颠倒。
二 ﹑探究讨论,深入理解
让学生说说对倒数意义的理解,在这个概念中你认为哪个词比较关键?
学生有可能会说1/5是倒数。5/1也是倒数。并让学生知道这种说法是不正确的。
乘积是1的两个数叫做互为倒数。只能说1/5和5/1互为倒数或1/5的倒数是5/1。但也有可能会说得很完整。
让学生重点去理解“互为”是什么意思,加深对倒数的概念的理解。
三﹑运用概念,探讨方法
3/5的倒数是( ),
8的倒数是( ),
0.5的倒数是( )
1. 3/5交换分子分母的位置,得5/3,所以3/5的倒数是5/3。
2. 8可以写成8/1,所以8的倒数是1/8。
3. 0.5也可以写成1/2,所以0.5的倒数是2.
让学生归纳总结出找倒数的方法。
四、补充概念,自我构建
0和1 有没有倒数,如果有,它的倒数是几,如果没有,为什么?同学们试着研究。
1的倒数是1 。
0没有倒数。因为0不能做为分数的分母。
加深对0没有倒数的理解;
加深对倒数知识的理解;
学生的思维逐步深刻,较好地实现了对于概念的建构,而且渗透了认真,严谨的学习态度。
五、巩固练习,形成技能
1、同桌互说倒数;
2、判断。
(1) 5/9是倒数,9/5也是倒数。( )
(2)0的倒数还是0.( )
(3)一个数的倒数一定比这个数小。( )。
3、开放性训练。3/5 ×( )=( ) ×4/7=( ) ×( )
学生会很活跃。
加深对0没有倒数的理解;
加深对倒数知识的理解;
开放题让学生的思维得到更深层次的拓展。
六、全课小结
这节课你学会了什么?
与教师一起总结
培养学生的表达能力以及加深对倒数知识的理解。
板书设计
倒数的认识
倒数的意义:乘积是1的两个数叫做互为倒数。
求倒数的方法:1.分数——分子分母调换位置。
2、整数或小数——先化成分数,再调换分子分母的位置。
1的倒数是1, 0没有倒数。
倒数的认识教学设计 篇2
教学目的:
1.使学生感知倒数的意义,掌握求倒数的方法,学会对倒数的正确表述。
2.培养学生的观察能力、数学语言表达能力、发现规律的能力等。
教学重点:求一个数的倒数的方法。
教学难点:理解倒数的意义,掌握求一个数的倒数的方法。
教学准备:教学光盘
课前研究:自学课本P50:
(1)什么是倒数?倒数的概念中哪几个字比较重要?说一说你是怎么理解的。
(2)观察互为倒数的两个数,说说他们分子、分母的位置发生了什么变化?
(3)0有倒数吗?为什么?
教学过程:
一、作业错例分析。
二、学习分数的倒数:
1、出示例7
学生在自备本上完成,指名核对。
教师板书: ×=1× =1× =1
2.你能模仿着再举几个例子吗?
学生回答,教师板书。
3.观察板书,揭示倒数意义:乘积是1的两个数互为倒数。(板书)
和 互为倒数,也可以说的倒数是 ,的倒数是。
让学生模仿着说另外两个算式,谁和谁互为倒数?谁是谁的倒数?
4.你能分别找出和的倒数吗?
学生同桌讨论找法,指名交流。
5.观察上面互为倒数的两个数,学生讨论怎样求一个分数的倒数?
指名交流方法:求一个分数的倒数时,只要把它的分子、分母调换位置就可以了。
6.合作练习:同桌两位同学一位说出一个分数,请另一位同学说这个分数的倒数,并交换练习。
三、学习整数的倒数:
1.电脑出示:5的倒数是多少?1的倒数呢?
学生跟自己的同桌说一说,再指名交流。
方法一:求5的倒数时,可以先把5看作,所以它的倒数是;
方法二:想5×( )=1,再得出结果。
2.那1的倒数是多少?(1)
3.0有倒数吗?为什么?(没有一个数与零相乘的积是1,所以0没有倒数)
4、 分数和整数(0除外)都有它的倒数,小数有没有倒数?你能发表自己的观点吗?
0.25 0.1 的倒数是多少?如何求的?
5、练一练 示范写 的倒数: 的倒数是 ,明确不能写成 =。
学生独立完成,集体核对。
四、巩固练习:
1.练习十第1题
学生独立完成后集体订正,说说思路及倒数的意义和求倒数的方法
2.练习十第2题
学生先独立找一找,再交流想法,注意说完整话。例:与4互为倒数。
3.练习十第3题
学生独立填空后集体订正。
4.练习十第4题
写出每组数的倒数。说说有什么发现?
第1组中都是真分数,倒数都是大于1的假分数。
第2组中都是大于1的假分数,倒数都是真分数。
第3组中都是一个分数的分数单位,倒数都是整数。
第4组中都是非0的自然数,倒数都是几分之一。
5.练习十第5题:
学生独立完成。说说怎样求正方体的表面积和体积。
6.练习十第6题
学生独立列式解答后,辨析。
两题中分数的不同意义:
第一题中的表示两个数量间的倍比关系,要用乘法计算。
第二题中的表示用去的吨数,求还剩多少吨,要用减法计算。
7.思考题
学生小组讨论,指名交流。
按钢管的长度分三种情况考虑:
(1)如果钢管的长度都是1米,那么两根钢管用去的一样多;
(2)如果钢管的长度小于1米,那么第一根用去的长度长一些;
(3)如果钢管的长度大于1米,那么第二根用去的长度长一些。
五、课堂总结:
今天我们学习了两个数之间的一种新的关系——倒数关系,谁再来说一说倒数是怎样定义的?怎样求一个数的倒数?1的倒数是多少?0有没有倒数?
倒数的认识教案 篇3
教学目标
1.理解和掌握倒数的意义.
2.能正确的求出一个数的倒数.
3.培养学生的观察能力和概括能力.
教学重点
认识倒数并掌握求倒数的方法
教学难点
小数与整数求倒数的方法
教学过程
一、基本训练
(一)口算
=
上面各式有什么特点?
还有哪两个数的乘积是1?请你任意举出乘积是1的两个数.
(板书:乘积是1,两个数)
二、引入新课
刚才我们所举出的乘积是1的两个数之间有一种特殊的关系.
(板书:倒数)
三、新课教学
(一)乘积是1的两个数存在着怎样的倒数关系呢?
请看: ,那么我们就说 是 的倒数,反过来(引导学生说) 是 的倒数,也就是说 和 互为倒数.
和 存在怎样的倒数关系呢?2和 呢?
(二)深化理解
教师提问
1.什么是互为倒数?
2.怎样理解这句话?(举例说明)
( 的倒数是 , 的倒数是 ,不能说 是倒数,要说它是谁的倒数.)
3.0有倒数吗?为什么?1有倒数吗?为什么?(0虽然可以看作几分之0,如 , ,但是把分子、分母调换位置,分母为0,不成立,所以0没有倒数,另外0和任何数相乘却为0.1可以写作 ,1与 相乘还是1,符合倒数的意义,所以1的倒数是1).
(三)求一个数的倒数
1.例:写出 、 的倒数
学生试做讨论后,教师将过程板书如下:
所以 的倒数是 , 的倒数是 .
(能不能写成 ,为什么?)
总结:求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置.
2.深化
你会求小数的倒数吗?
倒数的认识教案 篇4
教材分析:
这部分内容是在学历了分数乘法的基础上教学的,主要为后面学习分数除法做准备,因为一个数除以分数的计算方法,归结为乘这个数的倒数。这部分内容通过两个例题,主要教学倒数的意义和求倒数的方法。
设计理念:
本课强调从学生的学习兴趣,生活经验和认知水平出发,通过体验、实践、参与、交流和合作方式,让学生在合作学习的过程中,学会交流,相互评价,亲历知识的建构过程,培养学生的数学应用意识和激发学习热情,培养学生观察、归纳、推理和概括的能力。
教学目标:
认知目标:使学生通过探究活动,认识倒数的意义,掌握找倒数的方法。
能力目标:培养学生观察、归纳、猜想、推理和概括的能力。
情感目标:提供适当的问题情境,激发学生的学习兴趣和学习热情。让学生体验探索中成功的快乐,培养学生的创新意识和科学精神。
教学重点:
使学生通过探究活动,认识倒数的意义,掌握找倒数的方法。
教学难点:
使学生通过探究活动,认识倒数的意义,掌握找倒数的方法。
教学过程:
一、 创设活动情景,引入概念
师:我们刚刚学习了分数的乘法,老师想考考大家掌握的怎么样,能不能经受住老师的考验?
生(众):能!
师:好!(出示投影)请把下面的几个题目算一算,同位相互交换一下答案。
题目:3/8x8/3 7/15x15/7 5x1/5 1/12x12
生:进行计算。(完成后小组进行交流,学生汇报其发现的结论)
(通过计算,学生可能发现每组算式的乘积都是1,通过观察发现相乘的两个分数的分子和分母位置是颠倒的)
师:同学们发现了每组算式的两个分数的分子与分母正好颠倒了位置,所以我们把这样的两个分数叫做倒数。
出示倒数的意义:乘积是1的两个数互为倒数。
二、 探索研究,深入理解
师:同学们能不能说说你对倒数的意义的理解?
提示:“互为”是什么意思?
生:指的是倒数表示两个数之间的关系,这两个数缺一不可,互相依存,单独的一个数不能叫倒数。
师:回答的很好,下面同学们来判断一下我说的话有没有错误:因为3/4x4/3=1,所以3/4是倒数,4/3也是倒数。
生:(争先恐后地)不对!
师:那我该怎么说呢?
生:3/4和4/3互为倒数。
师:还有其他的说法吗?
生:3/4是4/3的倒数,4/3是3/4的倒数。
师:好,大家说的都不错,那么我给你一个数你能找出它的倒数吗?
生:能!
师:好!我我来考考大家!
三、 运用概念,探讨方法
师:(投影,出示例2)
3/5 6 7/2 5/3 1/6 1 2/7 0
找一找,下面的哪两个数互为倒数?
(小组探讨交流,并说说是怎样找的?汇报交流结果。)
生:有两种方法来找一个数的倒数:
1、看看两个分数的乘积是不是1;
2、看两个分数的分子与分母是否分别颠倒了位置。
师:(征求意见)大家同意他的说法吗?
生:同意!
师:大家认为哪一种方法更快呢?
生:第二种。
师:好,那咱们就用第二种来求一个数的倒数。(板演方法,强化学生的理解。)
四、 出示特例,深入理解
师:同学们再观察一下刚才我们做的题目,还有没有没找到倒数的数据?
生:有!1和0。
师:(提问)那1和0有没有倒数呢?如果有,是多少?
小组讨论、汇报。
1、 关于1的倒数。
因为1x1=1,根据“乘积是1的两个数互为倒数”,所以1的倒数是1。
2、 关于0的倒数。
因为0与任何数相乘都不等于1,所以0没有倒数。
五、 巩固练习
(用多媒体投影出示下列各题,学生先做,再全班交流)
1、 写出下列各数的倒数。
4/11 16/9 35 7/8 4/15
2、 下面说法对不对?为什么?
(1)7/12与12/7的乘积为1,所以7/12与12/7互为倒数。
(2)1/2x4/3x3/2=1,所以1/2、4/3、3/2互为倒数。
(3)0的倒数还是0。
(4)一个数的倒数一定比这个数校
六、归纳小结,交流共享
师:本节课你学到了什么,你有什么体会?
生:我认识了什么叫倒数,还学会了怎样求倒数。
七、布置作业:练习7第7题。