首页 > 教学教案 > 教案大全 > 教学反思 > 《连除简便计算》的教后反思(优秀10篇)正文

《《连除简便计算》的教后反思(优秀10篇)》

时间:

作为一名教师,总归要编写教学设计,教学设计以计划和布局安排的形式,对怎样才能达到教学目标进行创造性的决策,以解决怎样教的问题。那么写教学设计需要注意哪些问题呢?

简便计算教学反思 1

对于小学生来说,运算定律的运用具有一定的灵活性,对于数学能力的要求较高,这是问题的一个方面。另一个方面,运算定律的运用也为培养和发展学生思维的灵活性提供了极好的机会。

一、加强数学与现实世界的联系,促进知识的理解与应用。本单元教材最明显的特点之一就是关注数学的现实背景,从社会生活中来,到社会生活中来,到社会生活中去,体现了数学教学回归社会、回归生活的愿望。因此,领会教材这一意图,用好教材,借助数学知识的现实原型,可以调动学生、的生活经验,帮助学生理解所学运算定律,构建个性化的知识意义。进而,凭借知识意义的理解,也有利于所学运算定律的运用。

二、注意体现算法多样化、个性化的数学课程改革精神,培养学生灵活、合理选择算法的能力。简便运算的思路会有很多,但是,只要把握“简便”这个解题关键,正确、合理地使用定律、法则,就应该是正确的。简便计算不仅要求学生能明确运算顺序,正确计算,而且还要求学生有一定的观察能力,甚至要有一些直觉,能够进行合理的分析,找出其中能够进行简便运算的部分,并合理地进行简便运算。

课堂上我们可以通过练习,引导学生总结出一些常见的简算数对象“25和4”、“125和8”、“5与任何偶数”以及其他的可以凑整的数,同时使学生对简算有了比较深刻的理解,甚至有些学生有了对简便运算的直觉。让学生认识到简便计算更好算,不知不觉地把这种方法运用到了其他的地方比如其他计算、应用题的计算、现实生活等等,从而使学生的计算能力大幅度提高。

三、从课题和课本原有知识出发,又不拘泥于教材,跳出常规数学教学的框框, 课后让学生考虑“88×125”,第二天学生汇报了两种答案:

①88×125=80×125+8×125=10000+1000=11000;

②88×125=11×(8×125)=11×1000=11000。

我请学生分别介绍了他们的想法:第①种是把88分成80+8,再利用乘法分配率,让他们分别同125相乘;第②种则将88分成8×11,然后利用乘法交换率和结合率,先把8与125相乘,最后乘11。

两种答案的共同之处在于都发现了8与125相乘非常简便,于是想方设法对88进行分解,因此都把握住了这道题的关键,所以都是正确的;两种解法的区别是,分解的方法不同,第①种解法是用加法进行的分解,所以使用的是乘法分配率,第②种解法用乘法进行的分解,所以使用的是乘法交换率和结合率。方法不同却有异曲同工之处。

简便运算是灵活、正确、合理地运用各种定义、定理、定律、性质、法则等等,改变原有的运算顺序进行计算,通过简便运算要大幅度地提高计算速度及正确率,使复杂的计算变得简单。也就是说:变难为易,变繁为简,变慢为快。最重要的是灵活、合理地运用各种定义、定理、定律、性质、法则。尤其要强调“灵活”、“合理”。

小学乘法分配律教案 2

【教学目标】

1.理解并掌握乘法分配律的内容和字母表达式,运用乘法分配律进行计算,知道它的一些应用。

2.经历从现实背景中抽象出乘法分配律的过程,通过计算、观察、举例、验证、概括、说理等活动,积累数学探究活动经验。

3.体会乘法分配律的现实背景,了解乘法分配律的作用、意义及价值,初步感受转化、归纳等数学思想。

【教学重点】

理解、掌握并运用乘法分配律。

【教学难点】

从现实背景中抽象概括出乘法分配律。

【教学过程】

一、课前谈话,导入新课。

不知道同学们注意过没有,我们说的话中存在着一种有趣的分配现象。比如说:“我爱爸爸和妈妈。”可以把它分成两句来说:“我爱爸爸,我也爱妈妈。”照这样“我爱吃苹果和西瓜”可以怎样说?(我爱吃苹果,我也爱吃西瓜。)当然,也可以反过来,将两句话合成一句话来表述。“我爱看漫画书,我也爱看故事书。”可以这样说“我爱看漫画书和故事书。”今天中午我吃了米饭、青菜和鱼可以怎样说?是不是挺有趣的?其实在我们的数学中,也存在着这种有趣的分配现象,想不想一起去研究?

通过前几节课的探索,我们已经发现了乘法交换律和乘法结合律,这一节课,咱们再继续探索,看看又会发现什么新的规律。(板书:探索与发现(三))

二、探索交流,发现规律。

1、初步感知。

(1)(出示长方形草坪图)课件演示。

师:我们宝鸡的人民公园最近正在改建,大家看,这是一块草坪,工人叔叔准备在草坪的四周围上栅栏。看图,你发现了哪些数学信息??

(2)师:求栅栏长多少米?就是求长方形的什么呢?请同学们算一算。(生计算,师巡视)

(3)师:谁来说说自己的算法?(根据学生回答板书算式A)

师:像这样算的同学请举手。谁来说说,先算的什么?再算的什么?

(4)师:有没有不一样的想法?(根据学生回答板书算式B)

师:这样算的同学请举手。这种算法先算的什么,再算的什么呢?

A: B:

(61+39)×2 61×2+39×2

=100×2 =122+78

=200(米) =200(块)

(5)师:这两个算式,解决了同一问题。计算的结果也相等。那么,这两个算式之间可以用什么符号连接?(根据学生回答板书“=”)

(6)师:这两个算式真有趣,明明是不同的算式,却能得到相等的结果。它们之间一定有什么内在的联系与区别。观察,看看你能发现什么?同桌之间说一说。(生讨论,师巡视)

(7)师:说说你们的想法。

(8)师根据学生发言引导学生发现:

相同点:都使用了乘法和加法 ;

参与运算的数是相同的;

意义相同(都算了长方形的2条长与2条宽之和。)

不同点:运算顺序不同

左边先算和,再算积;右边先算积,再算和

2、再次感知。

你们帮老师解决了一个实际问题,老师奖励给大家一些笑脸,(出示笑脸图,每行有五个黄色笑脸图,三个红色笑脸图,共四行。)

(图略)

知道这上面一共有多少个笑脸吗?你能用几种方法解答?

学生再次各自列式计算,并很快说出两种不同的思考方法和算式,结合学生回答教师接着上题板书如下:

(5+3)×4=5×4+3×4

3、概括定律。

我们现在已经得到了两个等式:

(61+39)×2=61×2+39×2

(5+3)×4=5×4+3×4

从上面的算式中你有没有发现什么规律?

师:(惊奇地)你们真的发现了这些算式中隐含着的规律,请与你的同桌交流一下,好吗?

师:从大家的神态和脸部表情中,老师知道你们一定觉得自己发现了什么规律。同学们,你们发现了什么,我能猜到。不过,你们所看到的也许只是一种偶然现象,是一种猜想而已。你们能再举些例子对自己的猜想进行验证吗?

生在练习本上举例验证。

师:从同学们举的大量的例子中,可以确定你们的发现是正确的。 还有不同意见吗?

师:你们发现的这个知识规律,叫做乘法分配律。什么叫乘法分配律?请同桌再交流一下。

学生积极地与同桌交流着,又踊跃地参加集体交流。

生1:把括号里的两个数加起来后乘以一个数,等于把括号里的两个数都去乘以一个数,再把乘出来的积加起来。

生2:乘法分配律是:左边把两个数加起来乘以乘数,等于括号里的一个加数乘以乘数加上括号里的另一个加数乘以乘数。

师:你们想表达的是这样的意思吗?(教师出示幻灯:两个数的和与一个数相乘,可以用两个加数分别与这个数相乘,再把两个积相加,结果不变。)

师:这叫做乘法分配律。能用字母来表示乘法分配律吗?

结合学生回答,教师板书:

(a+b)×c=a×c+b×c

师:对于乘法分配律,用字母来表示,感觉怎样——(稍等)简洁、明了。这就是数学的美。

三、应用规律,解决问题。

1、师:看来你们已经发现了规律,下面根据你们发现的规律,来做一个“找朋友”的游戏。

小黑板出示:(25+36)×4 ,谁是它的好朋友?

6×(20+30)

(a+50)×6

45×8+55×8

7×16+7×184

2、根据运算定律,在□中填上合适的数。

①(12+50)×3= □×3+□×3

②15×(40 + 23) = 15×□+15×□

③78×20+22×20=(□+□)×20

④▲×+●×=(□+□)×□

⑤66×28 + 66×32 + 66×40=(□+□+□)×66

3、选择。请用手势表示正确答案的编号。

与 25×(4×8)相等的算式是( )。

①25×4+25×8; ②25×4×25×8; ③25×4×8

全班学生中有一位选①,三位选②,其余都选③。通过辨析,学生更加清楚乘法分配律的内涵及与乘法结合律的区别。

(学生独立在作业纸上完成后,集体订正,电脑逐个显示订正后的答案。

4、选择其中一组题目来计算

甲组乙组

①100×13+2×13 ① 102 ×13

②(63+37)×39 ②63×39+37×39

③ 9×(46+54) ③ 9×46+ 9× 54

师:先观察,确定一下你做哪一组。(先选好要做的内容,并说明理由。最后总结出:利用乘法分配律可以使一些计算简便。然后学生独立做题,完成后交流答案。)

5、实际应用。

足球比赛的时候,学校为同学们准备了饮料。准备了24箱苹果汁和26箱橘子汁,每箱都是24瓶,你知道一共有多少瓶饮料吗?(学生独立解答,再集体交流。)

师:每箱饮料36元,付1500元够吗?(学生完成后,交流)

四、全课总结,布置作业。

1、通过这节课的学习,你有什么收获和感受?

2、你觉得自己的表现哪里最好?

3、老师小结:今天同学们通过自己的探索,发现了乘法分配律,真的很棒。乘法分配律是一条很重要的运算定律。应用乘法分配律既能使一些计算简便,也能帮助我们解决生活中的一些数学问题,在我们的生活和学习中应用非常广泛。同学们要在理解的基础上牢牢记住它,希望它永远成为你的好朋友,伴你生活、成长。

4、作业(略)

简便计算教学反思 3

简便计算教学反思

这节课的教学过程我打破了传统的课堂教学结构,注重培养学生的创新意识和实践能力。整个过程学生从已有的知识经验的实际状态出发,通过质疑、猜想、例证、观察、交流、归纳,亲历了探究加法交换律和乘法交换律这个数学问题的过程,从中体验了成功解决数学问题的喜悦或失败的情感。

1.注重教学目标的整合化。

� 在教学中要处理好知识性目标和发展性目标平衡与和谐的整合,在知识获得的过程中促进学生发展,在发展过程中落实知识。在“交换律”这节课中,教师在目标领域中设置了过程性目标,不仅和学生研究了“交换律”“是什么”,更重要的是让学生体验了数学问题的产生、碰到问题“怎么办”和“如何解决问题”。花更多的时间关注学生的学习过程,有意识地引导学生亲历“做数学”的过程。引导学生用数学的眼光看待身边的事情并提出疑问:这种交换位置、结果不变的现象在我们的数学知识中有没有呢?激励学生从已有的知识结构中提取有效的信息,加以观察、分析,主动获得“加法交换律和乘法交换律”,在问题解决的过程中既获得了解决问题的方法,又体验了成功的情感。

2.注重教学内容的现实性。

新课标里曾指出,教学时应从学生熟悉的`情境和已有的知识出发进行,开展教学活动。这为我们的教学改革在操作层面上指出了方向。“交换律”这节课在以下几个方面进行了尝试。

(1)找准教学的起点。对学生学习起点的正确估计是设计适合每个学生自立学习的教学过程的基本点,它直接影响新知识的学习程度。加法交换律和乘法交换律在浙教版小学数学教材中分别安排在第七册和第八册,而在过去的学习中,学生对加法和乘法交换律已有大量的感性认识,并能运用交换加数(因数)的位置来验算加法(乘法),所以这节课教师把重点放在引导学生发现并用数学语言表述数学规律和总结怎样获得规律的方法上,使学生的认识由感性上升到理性。

(2)找到生活的原型。加法交换律和乘法交换律的实质是交换位置,结果不变,这种数学思想在生活中到处存在。本节课教师首先引导学生用辨证的眼光观察身边的现象,渗透变与不变的辩证唯物主义的观点;然后采撷生活数学的实例:同桌两位同学交换位置,结果不变。引导学生产生疑问:这种交换位置结果不变的现象在我们的数学知识中有没有呢?你能举出一个或几个例子来说明吗?这样利用捕捉到的“生活现象”引入新知,使学生对数学有一种亲近感,感到数学与生活同在,并不神秘,同时也激起了学生大胆探索的兴趣。

(3)改进材料的呈现方式。教材只是提供了教学的基本内容、基本思路,教师应在尊重教材的基础上,根据学生的实际对教材内容进行有目的的选择、补充和调整。本节课在教学材料的处理时,改变了把课本当作“圣经”的现象,让学生参与教学材料的提供与组织,给学生创设了一个创新和实践的学习环境,既激发了学生的学习动机和探究欲望,又使学生的身心得到了一种成功的体验。另外在材料呈现的顺序上,本节课改变了教材编排的顺序:在第七册教学加法交换律,在第八册教学乘法交换律,而是同时呈现,同时研究。因为当学生在已有认知结构中提取与新知相关的有效信息时,不可能像教材编排的有先后顺序之分,而是同时反映,充分做到了尊重学生的认知规律。

四年级数学乘法交换律教案 4

教学内容

四年级(下册)第61~62页。

教学目标

1.使学生经历探索乘法运算律的过程,理解并掌握乘法交换律和结合律,初步体验应用乘法运算律可以使一些计算简便,并能进行简便运算。

2.使学生在探索乘法运算律的过程中,初步培养学生观察、比较、抽象、概括能力,逐步提高抽象思维的水平,进一步发展符号感。

3.使学生在数学学习活动中获得成功的体验,进一步增强对数学学习的兴趣和信心,初步形成主动思考和探究问题的意识和习惯。

教学过程

一、复习旧知、导入新课

1.出示:

你能在下列的 内填上合适的数吗?

28+320=320+ ;

(27+138)+62=27+( + );

35+ = +35。

提问:你能说出填数的依据吗?谁能用字母分别表示加法的交换律和结合律?

2.出示:

在下列○内填上合适的运算符号。

4○10=10○4 (2○3)○5=2○(3○5)。

谈话:同学们,这两道题的○里既可以都填写加号,也可以都填写乘号。如果填加号是根据加法的交换律和结合律;而如果填乘号,你能联想到什么呢?是啊,加法有交换律和结合律,乘法是否也有交换律和结合律呢?

3.导入新课。

谈话:今天我们就来研究乘法中的运算规律,首先来研究乘法是不是有交换律呢?

【说明:加法的交换律和结合律是学生学习乘法交换律和结合律的基础,通过复习填数和在等式中填运算符号,一方面可以唤起学生对加法运算律的回忆,另一方面可以引起学生的联想和思考:加法有交换律和结合律,乘法是不是也有交换律和结合律呢?从而有效激发学生主动探究乘法运算律的欲望。同时,引导学生把加法运算律的活动经验和学习方法迁移到乘法运算律的学习中来,促进主动学习。】

二、举例验证探索规律

(一)探索乘法交换律。

1.情景中感知乘法交换律。

出示例题。(略)

谈话:图中的小朋友在干什么?你能列出乘法算式求一共有多少人在踢毽子吗?

学生列式:3×5=15(人)或5×3=15(人)。

提问:我们知道,每组有5个同学踢毽子,求3组同学一共有多少人,可以列式3×5,也可以列式5×3。所以,这两道算式可以用什么符号联结?

板书:3×5=5×3。

【说明:充分运用例题资源,让学生理解求一共有多少人踢毽子,就是求3个5是多少,根据乘法的意义可以列出两种不同的乘法算式。让学生在真实的情景中初步感知乘法的交换律,有利于唤起学生已有的知识经验,促进对乘法交换律的理解。】

2.举例验证。

谈话:我们知道3×5=5×3,你能再写出一些这样的等式吗?

学生举例。

引导:你是直接写出了等式还是先算出每组中两道算式的结果,然后再写等号呢?

学生交流,教师选择一些等式板书。

电脑验证大数相乘的结果。

谈话:像这样我们学过的两个数相乘,交换两个乘数的位置,积不变。

3.总结规律。

讨论:你写出的每一个等式左右两边的算式中什么变了,什么不变?把你的发现说给你的同桌听。(每组算式等号两边的两个乘数相同,积也相同,不同的是两个乘数交换了位置。)

板书:两个数相乘,交换乘数的位置,积不变,这叫做乘法的交换律。

提示:你能像加法交换律一样用字母来表示乘法的交换律吗?

板书:a×b=b×a。

提问:等式中的a和b可以分别表示什么数?你是喜欢用语言来叙述,还是用字母来表示乘法交换律呢?

【说明:引导学生观察和讨论等式中变与不变的规律,帮助学生透过现象看本质;让学生进一步体验用字母表示乘法交换律更加简洁明了,有利于培养学生的符号意识。】

4.回忆乘法交换律在过去学习中的运用。

谈话:乘法的交换律,我们在二、三年级就遇到过,你能回顾一下,过去在学习哪些知识时用过乘法的交换律吗?(学生可能想到:根据一句口诀可以算算两道乘法算式;用调换乘数的位置再乘一遍的方法验算乘法等。)

【说明:通过情景再现的方式,帮助学生回忆乘法交换律在过去的数学学习中的运用,能帮助学生进一步理解乘法交换律,同时使学生体会学习乘法交换律的价值。】

(二)探索乘法结合律。

1.初步感知。

谈话:我们已经通过举例的方法研究了乘法交换律,那现在让我们继续来研究乘法的结合律。

出示例题。(略)

谈话:仔细观察,现在操场上有多少人在踢毽子呢?你会列式计算吗?

组织学生交流。选择列为(5×3)×4和5×(3×4)的同学板演。

2.引导比较。

提问:两道算式完全一样吗?有什么不同?(两个算式中都是5、3、4这三个乘数相乘,乘数的位置相同,运算的顺序不同,计算结果也相同。第一道括号在前,表示先把前两个数相乘,再和第三个数相乘;第二道括号在后,表示先把后两个数相乘,再和第一个数相乘。)

提问:两道题的运算顺序不同,为什么得数还相同呢?(都是求操场上一共有多少人在踢毽子,都是把5、3、4三个数相乘)

板书:(5×3)×4=5×(3×4)。

3、举例验证。

谈话:从刚才的例子中,我们发现三个数相乘,可以先把前两个数相乘,也可以先把后两个数相乘。你能再写出几组这样的等式吗?请大家同桌合作,写一写,说一说。

组织交流,教师有选择地板书一些等式。

4.总结规律。

讨论:

(1)你发现等号两边的算式中什么不变,什么变了?

(2)你能从这些算式中发现什么规律?

师生共同归纳乘法结合律。

板书:三个数相乘,先把前两个数相乘,再和第三个数相乘,或者先把后两个数相乘,再和第一个数相乘,它们的积不变,这叫做乘法的结合律。

谈话:如果用a、b、c分别表示三个乘数,你能用含有字母的式子表示乘法结合律吗?

板书:(a×b)×c=a×(b×c)。

【说明:乘法结合律的教学,教师引出一个实例后,就把研究的主动权交给了学生,引导学生运用“猜测—举例验证—归纳结论”的思路进行探究,有利于学生进一步体会探索数学规律的一般过程。鼓励学生同桌共同研究,既可以避免学生因计算复杂而影响规律探究的积极性,又可以培养学生合作探究的能力,让学生在合作探究中享受数学学习的成功。】

乘法交换律教学设计 5

一、教学内容:

北师大版四年级上册数学第二单元p45-p46

二、教学目标:

1、经历探索过程,发现乘法结合律和交换律,并用字母表示。

2、在理解乘法结合律和交换律的基础上,会对一结算式进行简便计算。

3、感受数学探索的乐趣,培养自主探索问题的能力。

三、教学重、难点

1、重点:探索、发现、理解和应用乘法结合律和交换律。

2、难点:乘法结合律和交换律的探索过程。

四、教学过程

(一)口算比赛,激发学习兴趣

1、出示口算题

5×225×425×8125×8

2、师:以后在计算乘法时,一般看到“5”想到2,看到“25”想到4,看到“125”想到8;因为这样的两个数相乘能整到十、整百、整千数,这样可以快速计算。

3、谈话引入:我们在前面已学过乘法的计算,在教学运算中,有许多有趣的规律,这节课请同学们和老师一起去探索,看看你能发现什么?

(二)创设情境,发现问题

1、多媒体出示情境图

2、估一估

师:请大家认真观察,估一估这个长方体是由多少个小正方体搭成的?

3、算一算

师:谁估计的准确呢?请同学们在本子上算一算,比一比看谁做的又对又快。

4、交流算法。

师:谁愿意把你的办法介绍给大家?学生汇报,汇报时说一说自己是怎样想的。

师板书:(3×5)×4=60(个)

3×(5×4)=60(个)

(三)比较算式的特点,发现规律

1、刚才两位同学不同的方法解决了这个问题,现在请同学们一起观察这两个算式,看看你能发现什么?

2、学生汇报:略

3、小结:(3×50)×4=3×(5×4)

(四)提出假设,举例验证

1、师:用别的三个数这样计算会不会结果也相同呢?请在本子上举例计算。

2、学生举例

同桌之间互相交流?

3、集体交流

谁愿意介绍一下你们小组举例的情况?

(五)概括规律

1、从刚才大家所举的例子看,每一组的结果都是相同的。这样的例子多不多?能举的完吗?

2、如果用字母a、b、c分别表示乘法算式中的三个数字,你能写出所发现的规律吗?

板书(a×b)×c=a×(b×c)

板题:乘法结合律

(六)运用规律,解决问题

1、比较(3×5)×4=603×(5×4)=60两个算式,哪个更简便?

2、看来运用乘法结合律可以使一些计算简便。

3、练习:p46“试一试”的题目

学生独立完成,集体订正。

(七)探索乘法交换律

1、出示两组数据

4×5=5×412×10=10×12

2、师:认真观察,看看你有什么新发现?

3、学生汇报。

4、学生举例验证。

师:你能举出像这样的例子吗?

5、师:如果用字母a、b表示两个数,你能写出发现的规律吗?

6、板书:a×b=b×a

板题:乘法交换律

三、巩固练习

1、(完成课本第46页练一练第1题)

学生口答,集体订正。

2、应用乘法结合律和交换律,快速计算下面各题。

25×17×413×8×128(25×125)×(8×4)

(1)学生独立完成,个别板演。

(2)订正时让学生说说运用什么运算定律。

四、总结:这节课你有什么收获?

五、学生读课本第45、46页,质疑。

六、作业:课本第46页第2题。

乘法结合律 乘法交换律

《简便计算》教学反思 6

简便计算是小学计算教学中的重要组成部分,《简便计算》教学反思。我的理解是:简便计算应该是灵活、正确、合理地运用各种性质、定律等,使复杂的计算变得简单,从而大幅度地提高计算速度及正确率。

这几周我一直在教学简算,开始时学生对简算还挺感兴趣,毕竟简算可以摆脱那些繁琐的四则混合运算了,也不用竖式计算了,可是随着简算类型的不断增多,学生开始对一些类型混淆了,随着简算方法的多样化,简算的准确性也大打折扣。于是,我开始困惑、开始思考、我开始发现:简算不仅要求学生能明确运算顺序,正确计算,而且还要求学生有一定的观察能力,甚至要有一些直觉,能够进行合理的分析,找出其中能够进行简便运算的特征,并合理地进行简便运算。

于是,我让学生做了大量的直接简算的题。(我认为计算达不到一定的练习量是不行的)通过练习,引导学生总结出一些常见的可以简算的对象,如:“25与4相乘”、“125与8相乘”、“5与任何双数相乘”以及其他的可以凑整的数,同时使学生对简算有了比较深刻的理解。

“运用乘法分配律进行简算”是学生最不容易掌握的。根据以前的教学我发现,其实学生在真正的生活情境中还是会自觉的用乘法分配律的。比如算几套课桌椅价钱的问题,学生会列出两种不同的算式,也就是渗透了乘法分配律的思想,教学反思《简便计算》教学反思》。我在教学内容这部分时,学生确实很难达到自觉地运用分配律去计算,特别是一些变式就更加的困难了。我认为主要原因就是学生没有自觉观察算式特点的习惯。学生对于计算的目的是得到答案,而忽略了计算的过程,这也跟我平时的教学习惯有很大的关系。

有这样一道题(80+8)×25,学生完成后,我随即将该题改为“88×25”让学生做,学生做出了两种答案:①、88×25=80×25+8×25=20xx+200=2200;②、88×25=11×(8×25)=11×200=2200。我请学生分别介绍了他们的想法,他们说:第①种是把88分成80+8,再利用乘法分配律,让他们分别同25相乘;第②种则将88分成8×11,然后利用乘法交换率和结合率,先把8与25相乘,最后再乘11。

听完学生的介绍后,我进行了总结,首先肯定了两种答案的正确,然后对两种答案进行了分析:两种答案的共同之处在于都发现了8与25相乘非常简便,可以凑整。于是想方设法对88进行分解,因此都把握住了这道题的关键,所以都是正确的;两种解法的区别是,分解的方法不同,第①种解法是用加法进行的分解,所以使用的是乘法分配律。第②种解法用乘法进行的分解,所以使用的是乘法交换律和结合律。方法不同却有异曲同工之处。

最后强调:简便运算的思路会有很多,只要把握“凑整”这个解题关键,正确、合理地使用运算定律,就是正确的。这样教学,不仅使学生学会了单纯的简便运算,更重要的是,使学生初步理解了学以致用的道理,真正理解了书本上的知识必须运用到实际当中去的道理

《用乘法分配律简便计算》教后反思 7

一、一段题外话。

本月的最后一天,想着明天就要进入四月了。草长莺飞三月天,拂堤杨柳醉春烟。阳历三月一直是阴天,想着今年的春天也许就这样过去了,想着今年还没有好好地享受过一次在阳光下尽情沐浴的感觉,还没有感觉到春天懒洋洋的味道,这个春天就过了,实在是感激不了天气了。外面的田野里是一片金黄,缺少了阳光也就黄得不那么灿烂。桃花是一片粉红,可是缺少了阳光总少了欢欣的味道。不想让这个春天就这么过去,所以,只有期盼四月份天天晴天了。

昨天和今天对乘法分配律理解和运用乘法分配律进行简便运算进行了教学。从课堂上的情况来讲,教学任务基本上能够完成。从学生课后的作业来看,大多数的学生能够掌握,少部分的学生基本规律能懂,题目活络一些就有一定程度的困难,有待于以后在实践中加强。

二、从杨君的作业说起。

教学乘法分配律后,批完课堂作业后,我发现杨君的作业还没有交。这是常有的事情,这个孩子对任何学习上的事情都不感兴趣,作业总是能拖就拖。所以我问他追了一下。

追学生作业是一件很痛苦的事情。我们四年级的数学老师都有一本名单本,上面写上了学生的学号,学生每交一份作业就在相应的空栏中打上一个勾,这样一天到晚,哪位学生哪样作业没有交到就会清清楚楚。这一招很有效,却实在是无奈之举,针对的目标是那几个少数,实际上是怀疑全部。杨君,也就是几个少数之一。作业拿到手中我吓了一跳,因为简直是一塌糊涂,就连以前学过的应用题都是在错,一看就是没用脑子去做。当时就来气了,把他叫到办公室里去做,把应用题让他读了一下,问了几个铺垫性的问题,就放手让他自己来了。交上来倒是都对了。我明白,他不是不会,就是不肯用心去做,譬如平时考试一直在六七十分徘徊,期末考试就能考到八十多分。他就是我们沙地话中的那种“懒脑子。”

今天在课上特别关注了他,在巡视学生后,我特意走到他身边,看着他做了两三道题,有困难的地方轻声提点了一两句。今天的课堂作业交上来没有本质上的错误,只是在应用题中发生了一个计算错误。今天他的作业交得很快。下午因为代了体育课,让学生选择跟老师玩游戏还是做掉一份作业。杨君就勇敢地说:我要做数学作业。我看着他的两眼,这时候觉得他的眼睛在放光。于是我善意地笑了一句:“杨君呀,你现在发觉数学是不是蛮有趣的哟。”他高兴地点点头。今天他的作业没有再拖欠,而且下课主动地把错误的作业订正好了。

也许他只是三分钟的热度吧,但我依旧很高兴。虽然三年功夫我在他身上花了无数的心血,但我确实是没有看到过他这样起劲地喜欢上了做作业。也许,是我该检讨一下自己这三年多来对他的教学方式,这三年中,我对他有过好意的批评,也有过愤怒的讽刺,诚恳的劝告,请过家长,打过电话。但也许我从来就是以一种高高在上的姿态出现,他只是畏惧我的权威而逼不得已地做作业,不是一种内心的需要。庆幸的是,我从来没有放弃过他,就算是用逼的吧,杨君,我也总算没有让你掉队。以后当你真正喜欢上学习的时候,追上来也不至于那么吃力。

帮助,应该是平易的,亲切的。那么,杨君,我会改变自己,就让我继续以一个和善的形象出现。希望你能取得进步呀!

三、从老师的指令说起。

昨天的课堂学生的参与度不高,今天的相对而言好一些。其实我们班的学生都能说,也不是不爱说。我发现问题是出来我这儿。我给他们的任务目标明确了吗?他们真正明白我的意思了吗?可以说,昨天小组合作交流的话题就太广太大太多。

如:依照黑板上的题目写出2组算式,计算连成等式。

小组内观察等式,说说你的发现。

试着用自己的`方式来表达你发现的规律。

看着好像很不错。其实你站在学生的角度仔细想一想,够麻烦的。一道指令接着一道指令,留给他们完成的时间只有5、6分钟而已,学生那不是在自主探究,简直类似于疲于奔命。

今天的就比较清晰一些。

1、独立计算32×102,看看我们估计的结果对不对?

2、小组内交流你的算法。

今天就不错,人人都想说,人人都能说。而且人人都说得不错。

昨天我还在想,为什么学生自主探究后找不到规律,问题到底是出在哪儿,今天是想明白了,是出在自己这儿。哎,我的学生,我常批评你们的思维跳跃得太快,其实课堂上我也跳跃得过快一些,有时候简直把你们全班当成天才加快手,导致你们无法理解我真正想表达的意思。老师一定会注意的。同时,你们也一定要好好地表达自己的思想呀。

四、从一些细节说起。

一些地方是的确没有处理好。

一是在集体交流时学生提出用口算方式计算32×102时,我没有让他说下去。这儿是当时对班级学生的一个情况做出的反应。因为在他讲的时候另一个同学在板演,许多学生的注意力就被分散开来,而且他发言的声音又太小,我当时想,这样讲的效果不好,倒不如呆会儿讲。正好我准备了一块写有口算过程的小黑板,所以我打断了他,选择在黑板前的小姑板演完成时再让他补充讲一下。其实是有点太过着急,反过来,当黑板前的张凤板演好之后,再请学生讲一下其他的做法更好些。就整体学生而言精力也能够集中,就他而言,也更能够显出这种口算方法的妙性。要说的是,我虽然对口算这种方法毫无意见,并且 这个现象值得我去研究一下。

二是没有做好一个对比性的工作。当试一试完成后,其实应该与例题作出一个对比,让学生明确乘法分配律的两种运用方式。而且不光是这一处,在整堂课中对比性的东西都很少出现,导致本堂课总体感觉没有一个思想性的渗透,流于习题的堆积。虽然是一些小细节,但细节处绝不可忽略。

又想起了在南京时听到的一句话:随意不等于随便。要想随意也显得大气,看起来,是一定要经历一个长期的磨练与思考的再磨练的。春水流,奔腾万象,最根本的动力是思考与实践吧。

《简便计算》教学反思 8

运算定律与简便计算,共包括了五个定律和两个性质:

加法交换律:a+b=b+a 加法结合律:(a+b)+c=a+(b+c)

乘法交换律:a×b=b×a 乘法结合律:(a×b)×c=a×(b×c)

乘法分配律:(a+b)×c=a×c+b×c 或者a×(b+c)=a×b+a×c

连减法的性质:a-b-c=a-(b+c) 连除法的性质:a÷b÷c=a÷(b×c)

大多数学生对于加法运算定律和乘法的交换律掌握的比较好,对于乘法结合律和乘法分配律常混淆,针对这一现象,我采取对比的方法进行练习:

1. 101 × 87=(100+1)× 87=8700+87=8787(乘法分配律拆项法)

34 × 43+34 × 56+34=34 ×(43+56+1)=34 ×100=3400(乘法分配律 添项法)

2. 在教学中,我多次次听到学生把分配律说成结合律,在计算过程中,也多次出现这样的混淆。针对这一问题,我让学生注意观察,乘法分配律有两种以上运算符号,而乘法结合律只有一种运算符号。让学生在比较中区分,在区分中比较。

3. 简算与学生的数感是密不可分的,因此,在教学中,我注重培养学生良好的数感,对于学生提高运算能力,大有益处。当然,这不是一朝一夕就能提高的,而是需要大力练习。二、设计对比练习,促进有效教学

4. 学习连加、连减的简便计算后,往往会对加减混合产生方法的影响与方法上的障碍;同样,学习连乘、连除的简便计算后,也会乘除混合的计算产生影响。这种情况下,一定要加强对比练习,让学生从混淆走到清晰,让学生从障碍中走出来。如,463+82+18,463-82-18,9600×25×4 9600÷25÷4 9600÷25×4

5.针对逆向运用,有以下规律

加法结合律:346+(54+189)=346+54+189

乘法结合律:8×(125×982)=8×125×982

乘法分配律:89×75+89×25=89×(75+25)

减法的性质:894-(94+75)=894-94-75

连除的简便:350÷(7×2)=350÷7÷2

逆向运用训练,有利于培养学生的逆向思维。尤其对a-(b+c)=a-b-c 和a÷(b×c)=a÷b÷c的运用在有帮助。因此逆向运用的训练,很有必要。

《连除的简便计算》评课稿 9

《连除的简便计算》评课稿

为了让学生真正成为探索、合作交流的主体,组织了与教学内容紧密相连的活动,周世鹏师让学生独立探究解决问题。

这样既能让实际问题的生活背景成为学生理解简便计算方法及其算理的经验支撑,又能使解决问题的能力与计算能力的培养相互促进,同步提高。

当学生解决问题的方法多样化时,这已为学习连除的简便运算建立起知识的平台。让学生在对不同方法的分析比较中通过总结归纳解决问题的方法从而探究发现出连除的几种算法,使解决问题的'方法与能力和计算方法与能力的培养相互融合,促进相互的理解,掌握。

心理学家皮亚杰指出:“逻辑—是从主体的活动中抽象出来的,活动是儿童发现的主要途径和载体。因此,教师采用学生自主探索,小组合作的方式展开学习,让学生在实践活动中利用已有的经验,自己去发现探索,从而形成根据具体的情况,选择合适的方法使计算简便的能力。

请学生自主选择题组,分组探究,组内交流;然后派代表全班交流;最后共同小结,形成统一认识:计算连除时,可以根据四则运算顺序从左往右依次计算(一个数连续除以两个数),有时根据数字的特征有时改写成“一个数除以两个数的乘积”比较简便。计算“一个数除以两个数的乘积”时,可以根据四则运算顺序,先算小括号里面的,有时根据数字的特征改写成“一个数连续除以两个数”比较简便。

乘法交换律教学设计 10

设计说明

根据学生的认知规律,在教学中我坚持“以学生为主体”的理念,突出“以学生发展为本”的教学思想,整个教学过程以学生自主学习、自主探究为主,通过学生的观察、验证、归纳、运用,让学生感受数学问题的探究性和挑战性。

1.猜谜激趣,唤醒旧知。

数学与生活有着密切的联系,借助生活中的现象激发学生探究数学的欲望,可以起到事半功倍的效果。在导入新课时,教师口述谜语,以猜谜的形式引入,有利于激发学生的学习兴趣。当学生猜出是纽扣之后,教师顺势牵引到数学学习中,让学生回忆:在数学学习中,哪个知识点涉及到交换位置呢?通过这样的提问,唤起学生对已有知识的回忆,同时也为学生的知识迁移埋下伏笔。

2.知识迁移,探究体验。

探究数学规律是有过程的,对于这个过程的认识不是教师传授的,而是学生自己体验和感受的,对学生已有的体验和感受及时地归纳总结是提高探究能力的重要环节。本节课突出“以学生发展为本”的教学思想,在教师的引导下,利用学生已经掌握的加法运算定律进行知识迁移,学生通过猜想,探究、归纳出乘法交换律和乘法结合律,并理解其作用,为后面的简便计算作铺垫。

课前准备

教师准备多媒体课件课堂活动卡

教学过程

⊙猜谜引入,揭示课题

师:弟兄四五个,各有各的家,有谁走错门,让人笑掉牙。请同学们想一想,这是什么?(生积极举手,低声喊“纽扣”)

师:你为什么会想到是纽扣?(纽扣扣错了,衣服穿出去会很难看,会让人笑话)

师:纽扣交换了位置,就会产生笑话,我们刚学的加法运算定律也和交换位置有关。谁能将加法交换律说给同学们听听?(交换两个加数的位置和不变,这就是加法交换律)

师:用字母如何表示加法交换律和加法结合律?乘法有没有类似的规律呢?今天我们就一起来探究一下与乘法有关的运算定律。(板书课题)

设计意图:

用谜语拉开学习的序幕,既激发了学生学习的兴趣,又活跃了课堂气氛,让学生在轻松的环境中开始学习。以复习加法交换律和结合律作为教学的起�

⊙探究新知

1.解读主题图,引出例题。

(1)(课件出示主题图)观察主题图,说一说,主题图中给出了哪些信息?(一共有25个小组,每组里4人负责挖坑、种树……)

(2)你能根据主题图提出哪些问题?

(教师引导学生提出例5、例6的问题)

①负责挖坑、种树的一共有多少人?

②一共要浇多少桶水?

2.教学乘法交换律。

(1)课件出示例5:负责挖坑、种树的一共有多少人?

(2)要想解决这个问题,需要哪些条件呢?

(一共有25个小组,每组里4人负责挖坑、种树)

(3)先想一想,再列式计算,然后在小组内相互交流。

(4)指名汇报计算过程和结果。

汇报,可能有两种列式方法:

方法一4×25。

方法二25×4。

师:两个算式的结果是否相等?两个算式之间可以用什么符号连接?你还能举出其他这样的例子吗?

生1:两个算式的结果是相等的,可以用等号连接。

生2:我列举的算式是8×25=25×8=200。

师:你能从中发现什么规律?能给乘法的这种规律起个名字吗?(学生总结,教师引导,课件出示后学生齐读,师板书:两个数相乘,交换两个因数的位置,积不变。这叫做乘法交换律)

(5)你能试着用字母表示吗?(学生汇报用字母表示:a×b=b×a)

(6)我们在原来的学习中用过乘法交换律吗?(用过,在进行乘法验算时)

(7)反馈练习。

①下面有两道题需要同学们运用乘法交换律进行填空。(教材25页“做一做”中第一排的两道题)

②数学小游戏。

师:同学们的表现不错,所以老师决定做游戏奖励你们,这里有几道题,如果�

3×15=5×9a×b=b×a

34×0=0×348×3×9=8×9×3

3.教学乘法结合律。

师:加法有交换律和结合律,乘法也有交换律,那么乘法还可能有什么运算定律?选择例6作为研究对象来探究一下。

(1)课件出示例6:一共要浇多少桶水?

(2)要想解决这个问题,需要哪些条件呢?(一共有25个小组,每组要种5棵树,每棵树要浇2桶水)

(3)先想一想,再列式计算,然后在小组内相互交流。

学生独立解答,可能会出现两种不同的方法:

方法一先求一共种了多少棵树,再求一共要浇多少桶水。

(25×5)×2

=125×2

=250(桶)

方法二先求每组要浇多少桶水,再求一共要浇多少桶水。

25×(5×2)

=25×10

=250(桶)

(4)在这两个算式中,你们发现了什么?根据课件出示的活动卡,小组合作寻找规律。

出示小组合作学习的活动卡。(见课堂活动卡)

(5)小组汇报。

小组1:我们小组发现这两个算式的结果是一样的。

小组2:我们小组发现这两个算式的数字、运算符号、数字顺序、结果都相同,只有运算顺序不同。

小组3:我们小组发现三个数相乘,先乘前两个数,或者先乘后两个数,积不变。我们还举例进行了验证,如(30×5)×4=30×(5×4),125×(8×4)=(125×8)×4。

小组4:我们小组也发现了这个规律,并且根据加法结合律我们给这个规律起了个名字,叫乘法结合律。

师:同学们合作学习的成果真不少,你们发现的这个规律就是乘法结合律。

教师根据学生的汇报,板书:三个数相乘,先乘前两个数,或者先乘后两个数,积不变。这叫做乘法结合律。

用字母表示:(a×b)×c=a×(b×c)

(6)反馈练习。

教材25页“做一做”中第二排的两道题。

提问:做这两道题时,你运用了什么运算定律?

设计意图:

在教学过程中,采用小组合作的学习方式,通过观察、比较、举例、验证等活动,使学生在解决具体问题的过程中掌握乘法交换律和结合律,既关注了学生探究的过程,又培养了学生归纳概括的能力。